SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXL93.

This research was supported by NSERC Canada, the A. P. Sloan Foundation, the Merck Frosst Centre for Therapeutic Research, Eli Lilly Grantee Program, BioMega, and the University of Toronto.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and bond distances and angles involving non- H atoms have been deposited with the IUCr (Reference: FG1035). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bonner, W. A. (1951). J. Am. Chem. Soc. 73, 3126-3132.
Dale, J. A., Dull, D. L. \& Mosher, H. S. (1969). J. Org. Chem. 34, 2543-2549.
Dale, J. E. \& Mosher, H. S. (1968). J. Am. Chem. Soc. 90, 3732-3738. Dale, J. E. \& Mosher, H. S. (1973). J. Am. Chem. Soc. 95, 512-519.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lautens, J. C., Lautens, M. \& Lough, A. J. (1991). Acta Cryst. C47, 2725-2727.
Lautens, M., Tam, W. \& Sood, C. (1993). J. Org. Chem, 55, 25432549.

Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Siemens (1993). XCAD4. Program to Extract Intensity Data from Enraf-Nonius CAD-4 Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1995). C51, 473-475

3-(5-Oxo-L-prolyl)-L-thiazolidine-4carboxylic Acid

D. J. Ayala, G. Bombieri, T. Perosino and R. Stradi

Istituto Chimico Farmaceutico, Universita' di Milano, Viale Abruzzi 42, 20131 Milano, Italy
(Received 4 May 1994; accepted 14 July 1994)

Abstract

The molecular structure of the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, with ($2 \mathrm{~S}, 4 \mathrm{~S}$) absolute configuration, is characterized by the cisoid geometry of the carboxylic acid residue and by the presence of two different disordered conformations of the thiazolidine moiety.

Comment

The title compound is an immunomodulant drug active on $\mathrm{CD} 4+\mathrm{T}$-lymphocyte functions (Pugliese, Biglino, Uslenghi, Marinelli, Forno \& Girardello, 1992). It induces maturation and activation of T lymphocytes and stimulates polymorphonuclear granulocytes, macrophages and natural killer-cell activity. NMR studies in solution and conformational calculations on its conjugate base (probably the bioactive form of the molecule) indicate the existence of trans and cis conformers around the peptide bond with a very close conformational population (55 and 45%, respectively) (Villani, Pucciariello, Crimella \& Stradi, 1993).

This study proves that the conformation of the acidic form of the molecule in the solid state is cis. Although only the relative stereochemistry of the molecule is shown in Fig. 1, its absolute ($2 S, 4 S$) configuration is assigned on the basis of the chemical pathway followed during the preparation of the compound [the chirality of the molecule originates from the absolute configuration of (S)-pyroglutamic acid and (S)-thiazolidine-4carboxylic acid employed in its preparation].

The molecular structure with the atom-numbering scheme is illustrated as an ORTEP (Johnson, 1976) plot in Fig. 1.

The thiazolidine and prolyl rings are rotated by 98.95°, and the thiazolidine moiety is present in two conformations (envelope and quasiplanar) due

Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound illustrating the stereochemistry and the atomic labelling (displacement elipsoids are drawn at the 40% probability level). The H atoms are drawn as spheres with fixed radii.
to two alternative disordered positions of the S atom (population factors 0.8 and 0.2 , respectively). The conformational flexibility is confirmed by the different conformations found in various thiazolidine derivatives; for example, the twist conformation in N-acetyl-2-(p-tolyl)thiazolidine-4-carboxylic acid (Parthasarathy, Paul \& Korytnyk, 1976) and 2-oxo-4-thiazolidinecarboxylic acid (Keszler, Johnson \& White, 1991), and the envelope conformation in 3-(4-nitrobenzoyl)-4-thiazolidinecarboxylic acid ethyl ester (Averbuch-Pouchot, Durif, Pera \& Hamri, 1990).
The prolyl ring has puckering parameters $\varphi=$ 25.5 (4) ${ }^{\circ}$ and $Q=0.296$ (2) \AA (Cremer \& Pople, 1975), indicative of a 'twisted' conformation.
The torsion angles $\varphi_{1}, \varphi_{2}, \varphi_{3}$ (see Fig. 1), which characterize the structure, are $88.2(2), 2.4$ (3) and 88.7 (3) ${ }^{\circ}$, respectively $\left[\varphi_{1}=\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)\right.$, $\varphi_{2}=\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5), \varphi_{3}=\mathrm{C}(1)-\mathrm{C}(2)-$ $\mathrm{C}(21)-\mathrm{O}(212)]$, and confirm the results of the conformational analysis on the conjugate base (Villani et al., 1993) for the most stable conformation.

The $\mathrm{N}(1)-\mathrm{C}(4)$ bond distance $[1.347$ (3) \AA] has some double-bond character, confirmed by the planarity of the $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(3)$ fragment $\left(\varphi_{2}=2.4^{\circ}\right)$, as found in 3-(4-nitrobenzoyl)-4-thiazolidinecarboxylic acid ethyl ester (Averbuch-Pouchot et al., 1990), while the $\mathrm{C}(4)-\mathrm{O}(4)$ bond distance of 1.230 (3) \AA maintains its double-bond character.
Intermolecular hydrogen-bond interactions are indicated by the distances between the hydroxyl proton of

Fig. 2. Packing diagram (dotted lines indicate hydrogen-bond interactions).
the carboxylic group and the keto O atom of an adjacent molecule $\left[\mathrm{O}(211) \mathrm{H}(211) \cdots \mathrm{O}\left(8^{\mathrm{i}}\right) 1.64(5) \AA, \mathrm{O}(211)-\right.$ $\mathrm{H}(211) \cdots \mathrm{O}\left(8^{\mathrm{i}}\right) 166(5)^{\circ}$; symmetry code: (i) $-\frac{1}{2}+x$, $\left.\frac{1}{2}-y,-z\right]$, and between the amidic proton of the N atom and the next carboxylic O atom $\left[\mathrm{N}(2) \mathrm{H}(2) \cdots \mathrm{O}\left(212^{\mathrm{ii}}\right) 1.99(3) \AA, \mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{O}\left(212^{\mathrm{ii}}\right)\right.$ $170(3)^{\circ}$; symmetry code: (ii) $\left.\frac{3}{2}-x,-y,-\frac{1}{2}+z\right]$. The hydrogen bonds create a sheet structure developing in the $b c$ plane (Fig. 2). A similar polymeric structure has been found for the 2-oxo-4-thiazolidinecarboxylic acid derivative (Keszler et al., 1991) where the interatomic distances $\mathrm{N} \cdots \mathrm{O} 2.961$ (3) and $\mathrm{O} \cdots \mathrm{O} 2.622$ (3) \AA are comparable to the present values of 2.945 (3) and 2.556 (3) \AA, respectively.

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=244.271$
Orthorhombic
$P 2,212$
$a=5.593$ (1) \AA
$b=12.227$ (2) \AA
$c=15.705$ (7) \AA
$V=1074.1(6) \AA^{3}$
$Z=4$
$D_{x}=1.51 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25
reflections
$\theta=10-15^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Irregular prism
$1.2 \times 0.7 \times 0.2 \mathrm{~mm}$
Colourless
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction:
empirical $(\psi$ scan $)$
$T_{\min }=0.893, T_{\max }=$
0.995
2424 measured reflections
1852 independent reflections
1706 observed reflections
$\quad[I \geq 2.5 \sigma(I)]$

$$
\begin{aligned}
& R_{\text {int }}=0.012 \\
& \theta_{\max }=25^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-1 \rightarrow 14 \\
& l=-1 \rightarrow 18
\end{aligned}
$$

3 standard reflections frequency: 60 min intensity decay: none

Refinement

Refinement on F
$R=0.0367$
$w R=0.0409$
$S=0.85$
1706 reflections
193 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}\right)\right.$
$\left.+0.003739\left(F_{o}\right)^{2}\right]$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.03 \\
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e} \AA^{-3} \\
& \text { Atomic scattering factors } \\
& \text { from International Tables } \\
& \text { for X-ray Crystallography } \\
& \text { (1974, Vol. IV) }
\end{aligned}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \mathbf{a}_{j}
$$

	\boldsymbol{x}	y	z	U_{cq}
$\mathrm{S}(1) \dagger$	$0.1915(2)$	$-0.25356(6)$	$0.09969(5)$	$0.0409(3)$
$\mathrm{S}(2) \ddagger$	$0.104(1)$	$-0.2091(5)$	$0.1212(3)$	$0.067(1)$
$\mathrm{O}(4)$	$0.7023(3)$	$0.0378(1)$	$0.0147(1)$	$0.0408(5)$

$\mathrm{O}(8)$	$0.7277(3)$	$0.2193(1)$	$-0.1951(1)$	$0.0436(5)$
$\mathrm{O}(211)$	$0.2768(4)$	$0.0828(2)$	$0.1458(1)$	$0.0501(6)$
$\mathrm{O}(212)$	$0.5668(4)$	$0.0541(1)$	$0.2392(1)$	$0.0564(6)$
$\mathrm{N}(1)$	$0.4093(3)$	$-0.0817(1)$	$0.0454(1)$	$0.0282(5)$
$\mathrm{N}(2)$	$0.5754(3)$	$0.0567(1)$	$-0.1536(1)$	$0.0302(5)$
$\mathrm{C}(1)$	$0.3175(6)$	$-0.1675(2)$	$0.1798(2)$	$0.0503(9)$
$\mathrm{C}(2)$	$0.4817(4)$	$-0.0846(2)$	$0.1356(1)$	$0.0299(6)$
$\mathrm{C}(3)$	$0.1880(5)$	$-0.1398(2)$	$0.0260(2)$	$0.0389(7)$
$\mathrm{C}(4)$	$0.5214(4)$	$-0.0117(2)$	$-0.0075(1)$	$0.0270(6)$
$\mathrm{C}(5)$	$0.4026(4)$	$0.0116(2)$	$-0.0933(1)$	$0.0282(6)$
$\mathrm{C}(6)$	$0.2270(4)$	$0.1084(2)$	$-0.0818(2)$	$0.0362(6)$
$\mathrm{C}(7)$	$0.3859(5)$	$0.2081(2)$	$-0.0970(2)$	$0.0375(7)$
$\mathrm{C}(8)$	$0.5825(4)$	$0.1651(2)$	$-0.1535(1)$	$0.0310(6)$
$\mathrm{C}(21)$	$0.4505(4)$	$0.0260(2)$	$0.1786(1)$	$0.0329(6)$

\dagger Occupation factor: 0.8 .
\ddagger Occupation factor: 0.2.
Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{S}(1)-\mathrm{C}(1)$	$1.785(3)$	$\mathrm{S}(1)-\mathrm{C}(3)$	$1.810(3)$
$\mathrm{O}(4)-\mathrm{C}(4)$	$1.230(3)$	$\mathrm{O}(8)-\mathrm{C}(8)$	$1.235(3)$
$\mathrm{O}(211-\mathrm{C}(21)$	$1.301(3)$	$\mathrm{O}(212-\mathrm{C}(21)$	$1.203(3)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.474(3)$	$\mathrm{N}(1)-\mathrm{C}(3)$	$1.460(3)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.347(3)$	$\mathrm{N}(2)-\mathrm{C}(5)$	$1.462(3)$
$\mathrm{N}(2)-\mathrm{C}(8)$	$1.326(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.533(4)$
$\mathrm{C}(2)-\mathrm{C}(21)$	$1.521(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.529(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.548(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.528(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.508(3)$		
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(3)$	$90.1(1)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	$118.7(2)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(4)$	$125.1(2)$	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(8)$	$113.3(2)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$115.0(2)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$106.6(2)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$107.9(2)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	$111.9(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	$108.6(2)$	$\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{N}(1)$	$103.4(2)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.4(2)$	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{N}(1)$	$121.3(2)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	$110.7(2)$	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.1(2)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$101.9(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$108.4(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$103.7(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$102.9(2)$
$\mathrm{O}(8)-\mathrm{C}(8)-\mathrm{C}(7)$	$127.1(2)$	$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$109.1(2)$
$\mathrm{O}(212)-\mathrm{C}(21)-\mathrm{C}(2)$	$122.9(2)$	$\mathrm{O}(8)-\mathrm{C}(8)-\mathrm{N}(2)$	$123.7(2)$
$\mathrm{O}(211)-\mathrm{C}(21)-\mathrm{O}(212)$	$124.4(2)$	$\mathrm{O}(211)-\mathrm{C}(21)-\mathrm{C}(2)$	$112.6(2)$

Program used to solve structure: SHELXS86 (Sheldrick, 1985). The structure was refined by full-matrix least squares with anisotropic displacement parameters for all non-H atoms. H atoms were located on a difference Fourier map, except for $\mathrm{H}(11)$ [bonded to $\mathrm{C}(1)$] which was introduced at a calculated position ($\mathrm{C}-\mathrm{H}=1.080 \AA, U_{\text {iso }}=0.07 \AA^{2}$) and not refined; all other H atoms were refined isotropically. Program used to refine structure: SHELX76 (Sheldrick, 1976).

One of us (JDA) is much indebted to Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for fellowship at the University of Milan.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1093). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Averbuch-Pouchot, M. T., Durif, A., Pera, M. H. \& Hamri, A. (1990). Acta Cryst. C46, 299-301.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Keszler, D. A., Johnson, A. T. \& White, J. D. (1991). Acta Cryst. C47, 1481-1482.

Parthasarathy, R., Paul, B. \& Korytnyk, W. (1976). J. Am. Chem. Soc. 98, 6634-6643.
Pugliese, A., Biglino, A., Uslenghi, C., Marinelli, L., Forno, B. \& Girardello, R. (1992). Int. J. Immunother. 8, 212-219.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Villani, V., Pucciariello, R., Crimella, T. \& Stradi, R. (1993). J. Mol. Struct. 298, 177-190.

Acta Cryst. (1995). C51, 475-477

2-(p-Ethoxyphenyl)-5-hexyl-1,3-dithiane, $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{OS}_{2}$

Michihiro Miyake*
Department of Chemistry, Faculty of Engineering, Gunma University, Tenjin, Kiryu 376, Japan
Yuichiro Haramoto
Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Yamanshi University, Takeda, Kofu 400, Japan

(Received 3 August 1993; accepted 28 June 1994)

Abstract

The molecules, which are trans isomers, are almost linearly extended and are stacked with their axes alternately oriented. The dithiane rings of the molecules are in chair conformations and are situated close together; the $\mathrm{S} \cdots \mathrm{S}$ interatomic distance is $3.006(1) \AA$.

Comment

2,5-Disubstituted 1,3-dithianes, ($R-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~S}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-R^{\prime}$), have been reported as a new type of liquid-crystal compound (Haramoto \& Kamogawa, 1983, 1985a,b; Haramoto, Nobe \& Kamogawa, 1984; Haramoto, Akazawa \& Kamogawa, 1984). The title compound, (I), with $R=n-\mathrm{C}_{6} \mathrm{H}_{13}$ and $R^{\prime}=\mathrm{OC}_{2} \mathrm{H}_{5}$, exhibits monotropic behaviour and the nematic liquid-crystal phase appears in the temperature range $316-305 \mathrm{~K}$.

The molecule of compound (I) is shown in Fig. 1. The molecule, which is the trans isomer, is almost linearly extended. The $\mathrm{S} \cdots \mathrm{S}$ interatomic distance, the mean S C bond length and the mean $\mathrm{C}-\mathrm{C}$ bond length in the dithiane ring are 3.006 (1), 1.808 (4) and 1.516 (5) \AA, re-

